Effective Date: 2008-2009

Hamburg Area School District

Grade Level: 11th and 12th Name of Course: AP Physics B

Department: Science Instructional Time: 180 Days

> **Length of Course: Year Period Per Cycle: Eight**

Length of Period: 43 minutes

Texts and Resources: Assessments:

1. Lou, Wilson Buffa. College Physics Sixth Edition. Pearson/Prentice Hall. 2007

2. Puri, Om P., Zober, Patricia J., Zober, G. Patrick. Physics Laboratory Manual.

Pearson Custom Publishing. 2001

3. Internet Resources

4. Physlet® Physics: Interactive Illustrations, Explorations and Problems for Introductory Physics, 1/E

Christian & Belloni | ©2004 | Addison-Wesley | Paper; 352 pages

Text and/or teacher made test Formal and Informal observation Formal and Informal evaluation **Projects**

Course Name: AP Physics B Unit: Newtonian Mechanics

Time Line: 11.25 cycles

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is Physics?	Identify activities and fields that involve the major areas within physics Describe the processes of the scientific method Describe the role of models and diagrams in physics	S11.A.1.2.1 S11.A.1.1.1
How are measurements interpolated in experiments?	List basic SI units and the quantities they describe Convert measurements by using dimensional analysis Use significant figures in measurements and problem solving Interpret data in tables and graphs, and develop equations Describe the safety procedures for lab Perform a lab on measurement and error analysis	S11.A.1.1.4 S11.A.1.3.1
What is motion in one dimension?	Construct and interpret graphs of position versus time Describe motion in terms of distance, displacement, and time Distinguish between speed and velocity Describe motion in terms of a rate Describe motion in terms of a rate of a rate Describe a motion of a freely falling body Calculate displacement, speed, velocity, and distance Demonstrate and perform a lab related to one dimension motion Perform a lab on the kinematics of accelerated motion	\$11.A.3.3.3 \$11.A.2.1.1 \$11.A.2.1.2

Course Name: AP Physics B Unit: Newtonian Mechanics

Time Line: 11.25 cycles

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is two dimensional motion and vectors?	Distinguish between a vector quantity and a scalar quantity Solve vectors by graphical addition of vectors (polygon method) Solve vectors by the parallelogram method Solve vectors by the component method using trigonometric functions Describe the path of a projectile as a parabola Perform a lab on projectile motion Solve vectors into their components and apply the kinematics equations to solves problems involving projectile motion Solve problems involving relative velocity Analyze graphical motion by using a motion detector	S11.A.3.2.1 S11.A.3.3.3

Course Name: AP Physics B Unit: Newtonian Mechanics

Time Line:

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What are forces and the Laws of Motion?	Explain Newton's First Law	S11.C.3.1.2
	Explain Newton's Second Law	S11.C.3.1.3
	Solve Newton's Second Law by F=ma	
	Explain Newton's Third Law	
	Calculate the force required to bring to bring an object into	
	equilibrium	
	Solve Equilibrium problems	
	Perform a lab on Free Fall	
	Perform a lab on Newton's Second Law	
What are work, energy, and power?	Calculate work using the Work-Energy Theorem	S11.C.3.1.6
	Explain conservation of forces	S11.C.3.1.5
	Calculate potential and kinetic energy using the	S11.C.3.1.1
	Conservation of Mechanical Energy	
	Calculate power	
	Perform a lab on Static Equilibrium	
What is linear momentum?	Explain and calculate impulse and linear momentum	S11.C.3.1.1
	Explain Conservation of Linear Momentum	
	Solve linear momentum problems	
What is circular and rotational motion?	Explain uniform circular motion	S11.C.3.1.1
	Explain angular momentum of point particles	S11.C.3.1.2
	Calculate torque	S11.A.2.1.1
	Calculate rotational equilibrium	S11.A.2.1.2
	Solve rotational equilibrium problems	
	Explain second condition for equilibrium	
	Solve second condition equilibrium problems	

Course Name: AP Physics B Unit: Newtonian Mechanics

Time Line:

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is oscillations and gravitation?	Explain simple harmonic motion	S11.A.2.1.1
	Perform a lab on pendulum motion	S11.C.2.1.1
	Explain Hooke's Law and a mass on a spring	S11.A.1.1.4
	Perform a lab on Hooke's Law	
	Explain pendulums	
	Explain and Calculate Newton's Universal Law of	
	Gravitation	
	Solve simple harmonic problems	
	Explain motion of planets and satellites in circular orbits	
	Solve orbital problems	

Course Name: AP Physics B

Unit: Fluid Mechanics and Thermal Physics Time Line: 4 cycles

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
	Explain hydrostatic pressure	S11.A.2.1.1
What is fluid mechanics?	Explain buoyancy	S11.A.2.1.2
	Explain fluid flow continuity	
	Calculate and define Bernoulli's equation	
	Solve pressure and continuity problems	
What is temperature and heat?	Explain mechanical equivalent of heat	S11.A.2.1.1
•	Explain and calculate specific heat	S11.A.2.1.2
	Explain latent heat	
	Explain and calculate thermal expansion	
	Explain heat transfer	
	Solve latent heat and specific heat problems	
	Perform a Specific Heat lab	
What is the kinetic theory of gases?	Explain the ideal gaseous behavior by the Kinetic Model	S11.A.2.1.1
	and the Ideal Gas Law	S11.C.1.1.5
	Calculate the Ideal Gas Law	
	Solve Ideal Gas Law problems	
	Explain and analyze the First Law of Thermodynamics by	
	the isobaric and isovolumetric processes	
	Analyze PV diagrams	
	Explain and analyze the Second Law of Thermodynamics	
	by using the heat engines and Carnot engines	
	Analyze and solve entropy problems	

Time Line: 8.75 cycles

Course Name: AP Physics B Unit: Electricity and Magnetism

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is electrostatics?	Explain and define Coulomb's Law Calculate Coulomb's Law Define, explain, and solve E-fields problems Define and explain electric potential	S11.C.2.1.4 S11.C.3.1.4
What are conductors, capacitors, and dielectrics?	Define and explain conductors, capacitors, and dielectrics Analyze, and solve parallel plate capacitors problems	S11.B.3.4.12 S11.C.3.4.12 S11.C.3.8.12
What are electrical circuits?	Define and explain current, resistance, and power Analyze and solve DC circuits with batteries and resistors problems Analyze capacitors in steady state circuits Perform an Ohm's Law lab Perform a series and parallel resistor circuit lab	S11.C.2.1.4
What is magnetostatics?	Analyze and solve forces on charged particles moving in a B-field Analyze and solve forces on current carrying wires in a B-field	S11.A.1.1.3

Course Name: AP Physics B Unit: Electricity and Magnetism

Time Line:

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is electromagnetism?	Describe and explain electromagnetic induction Analyze Faraday's Law of Induction Analyze Lentz's Law Solve magnetic flux and motional EMF problems	S11.B.3.4.12 S11.C.3.4.12 S11.C.3.8.12

Course Name: AP Physics B Unit: Waves and Optics

Time Line: 5.8 cycles

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is wave motion and sound?	Analyze properties of traveling waves Analyze properties of standing waves Perform standing wave lab Develop an understanding of Doppler Effect Analyze superposition of waves Solve longitudinal wave problems	S11.C.3.1.3 S11.A.2.1.1
What is physical optics?	Explain interference Explain diffraction Explain dispersion of light Analyze the electromagnetic spectrum Perform a Snell's Law lab	S11.A.2.1.1
What is geometric optics?	Explain reflection, refraction, mirrors, and lenses Solve Snell's Law problems Perform refraction and reflection lab	S11.A.2.1.1 S11.A.3.3.3

Time Line: 20 cycles

Course Name: AP Physics B Unit: Miscellaneous Projects

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
Do students have enough practical application of Physics and science? Students will have the opportunity to work on related sections of certain science and / or engineering projects but not limited to the Science Olympiad, TEAMS, Penn Technology Engineering Competition (PEM Fuel Cells), and the Reading Berks Science and Engineering Fair.	Apply logic and problem solving skills Ability to apply facts and formulas to real science and / or engineering questions Provides examples of the importance of science and engineering to everyday human life Apply knowledge learned in the classroom to real world science and engineering scenarios Inspire creativity, team-work, critical thinking, and peer-to- peer cooperation	\$11.A.1.1.3 \$11.A.2.1.1 \$11.A.3.3.3 \$.11.A.1.3.1