Effective Date: 2008-2009 School Year

Hamburg Area School District

Name of Course:	Chemistry SB	Grade Level:	11
Department:	Science	Instructional Time:	180 DAYS
		Length of Course:	1 YEAR
		Period Per Cycle:	6
		Length of Period:	45

Texts and Resources:

Internet Handbook of Chemistry and Physics Laptops Virtual ChemLab (CDRom or Online) Text: *Chemistry*, Prentice Hall 2008 Promethean Board

Assessments:

Exams Quests Quizzes Research Papers Lab Reports and Activities Projects Discussions Current Events Guided Inquiry

Course Name: Chemistry SB Unit: Introduction to Chemistry and Safety Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
Safety	• Students will become familiar and practice general safety procedures in the classroom and laboratory.	
What is chemistry?	 Identify the five traditional areas of study in chemistry. Relate pure chemistry to applied chemistry 	S.11.A.1.2.1
Why should I study chemistry?	 Identify the main areas of chemistry research. Describe some current focuses of chemistry research, i.e. medicine, materials, energy, agriculture, and technology. Distinguish between macroscopic and microscopic views. Explore the impact of scientific knowledge and discoveries on personal and community health. Recognize how science influences human population growth Investigate how science can be used to solve environmental problems. Investigate advances in science and technology that have important and long-lasting effects on science and society. Recognize how science and technology are necessary but not sufficient for solving local, national, and global issues. 	S.11.A.1.2.1 S.11.A.1.2.2 S.11.A.1.3.4 S.11.A.2.2.2

Course Name: Chemistry SB Unit: Introduction to Chemistry and Safety Text: *Chemistry*, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How do scientists attempt to answer questions related to observations about the natural world?	 Analyze the role science plays in everyday life and compare different careers in science. Describe how Lavoisier changed chemistry. Identify and apply the steps of the scientific method. Recognize that scientific knowledge comes from empirical standards; logical arguments, and skepticism, and changes as new evidence becomes available. Explain why collaboration and communication are important in science. 	S.11.A.1.1.3 S.11.A.1.1.5 S.11.A.1.2.1 S.11.A.2.1.3 S.11.A.2.1.4 S.11.A.2.1.5

Course Name: Chemistry SB Unit: Problem Solving in Chemistry Text: *Chemistry*, Prentice Hall, 2008

Text: Chemistry, Prentice Hall. 2008		D. Ottaviani
Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is a general approach to solving a problem?	 Develop and implement a plan in order to solve a problem. Students will design and conduct different kinds of scientific investigations for a wide variety of reasons. Students will communicate and defend the designs, procedures, observations, and results of scientific investigations. Students will review and analyze scientific investigations and explanations of other investigations including peers. Recognize that science uses direct and indirect observation during scientific investigation. Distinguish between testable and non-testable questions. Distinguish between scientific facts, theories and laws. 	S.11.A.1.1.1 S.11.A.1.1.2 S.11.A.1.1.3 S.11.A.1.1.5 S.11.A.2.1.1. S.11.A.2.1.2 S.11.A.2.1.4 S.11.A.2.1.5
What are the steps to solving numeric problems?	 Apply the three steps (analyze, calculate and evaluate) to solve numeric word problems. Students will apply mathematical models to science and technology 	S.11.A.2.1.3 S.11.A.3.2.2
What are the two steps to solving conceptual problems?	• Apply the process of analysis and solve to explain conceptual problems, i.e. interpreting diagrams and concept maps.	S.11.A.1.1.4 S.11.A.3.1.1 S.11.A.3.2.2 S.11.A.3.2.3

Course Name: Chemistry SB Unit: Classification of Matter Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
How can properties used to describe matter be classified?	 Identify properties of matter as extensive or intensive. Define physical properties and list several common physical properties of substances. Differentiate among the three states of matter. Sketch or create models of the three states of matter on a molecular level and compare the amount of kinetic energy related to each state of matter. Describe a physical change in a substance. 	S.11.B.1.1.1 S.11.C.1.1.2 S.11.C.1.1.3
How can mixtures be classified?	 Categorize a sample of matter as a substance or a mixture. Distinguish between homogeneous and heterogeneous samples of matter. Describe two ways that components of mixtures can be separated. 	S.11.C.1.1.2
How are elements and compounds different?	 Explain the difference between an element and a compound. Distinguish between a substance and a mixture. Identify the chemical symbols of common elements, and name common elements given their symbols. 	S.11.C.1.1.1 S.11.C.1.1.2

Course Name: Chemistry SB Unit: Classification of Matter Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
What is a chemical change?	 Describe what happens during a chemical change. Identify four clues that a chemical change has taken place, and recognize that the composition of matter has changed in each. Students will write a word equation indicating a chemical reaction they relate to everyday life: i.e. commercial use for yeast, transportation, etc. 	S.11.A.1.3.1 S.11.A.1.3.2 S.11.C.2.1.2 S.11.C.2.1.3

Course Name: Chemistry SB Unit: Measurement and Uncertainty Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
What technological skills will be used?	 Students will identify and safely use a variety of laboratory tools, basic equipment, materials, and techniques to solve problems and answer questions. Students will apply accurate measurement knowledge to solve everyday problems. Students will apply basic computer operations and concepts such as touch keyboarding skills and techniques at acceptable speed and accuracy. Students will demonstrate basic word processing and spreadsheet skills. 	S.11.A.2.2.1 S.11.A.2.2.2
How do measurements relate to science?	 Convert measurements between standard notation and scientific notation. Differentiate between accuracy, precision and error of a measurement. Identify the number of significant figures in a measurement and in calculated results. 	S.11.A.2.1.3 S.11.A.2.1.5 S.11.A.2.2.1

Course Name: Chemistry SB Unit: Measurement and Uncertainty Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
What metric units are commonly used to measure length, volume, mass, temperature and energy?	 List SI units of measurement and common SI prefixes. Distinguish between the mass and weight of an object. Apply different measurement systems, and select the best measurement system for mass, volume, and distance. Convert between Celsius, Fahrenheit and Kelvin temperature scales. when formulas are provided. 	S.11.A.2.1.3 S.11.A.2.1.5 S.11.A.2.2.1 S.11.A.3.1.3
How do I use scientific notation in chemistry?	• Convert between scientific notation and standard notation.	S.11.A.2.1.3 S.11.A.2.1.5
Why is dimensional analysis useful?	 Construct conversion factors from equivalent measurements. Apply the techniques of dimensional analysis to a variety of conversion problems. Solve problems by breaking solutions into steps. 	S.11.A.2.1.5 S.11.A.2.2.1
What determines the density of a substance?	 Calculate the density of a material from experimental data. Describe how density varies with temperature. Recognize that floating objects are less dense then the medium they are floating in. 	S.11.A.2.1.3 S.11.A.2.2.1 S.11.A.3.1.2

Course Name: Chemistry SB Unit: Atomic Structure Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
How did Democritus describe atoms?	• Describe Democritus' ideas about atoms.	S.11.A.1.1.2 S.11.A.1.1.3
How did John Dalton describe atoms?	 Explain how Dalton improved earlier atomic ideas. Understand that special instruments are needed to observe individual atoms. 	S.11.A.1.1.2 S.11.A.1.1.3
What are subatomic particles?	 Describe the structure of atoms according to J.J. Thompson's Plum Pudding model Identify three types of subatomic particles. Describe the structure of atoms according to the Rutherford model. 	S.11.A.3.2.1 S.11.A.3.2.2 S.11.A.3.2.3 S.11.C.1.1.1
What makes one element different from another?	 Explain what makes elements and isotopes different from each other. Calculate the number of neutrons in an atom. Calculate the atomic mass of an element. Explain why scientists use the periodic table. 	S.11.A.3.2.3 S.11.A.3.3.2 S.11.C.1.1.1

Course Name: Chemistry SB Unit: Atomic Structure Text: *Chemistry*, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How have theories about the structure of the atom changed over time?	 Identify inadequacies in the Rutherford atomic model. Identify the new assumption in the Bohr model of the atom. Students will recognize that models and theories have changed over time. Describe the energies and positions of electrons according to the quantum mechanical model. Describe how the shapes of orbitals at different sublevels differ. 	S.11.A.3.2.1 S.11.A.3.2.2 S.11.A.3.2.3 S.11.A.3.3.3
What are the three rules for writing the electron configurations of elements?	 Apply the Aufbau principle, Pauli exclusion principle, and Hund's Rule to write the electron configuration for several simple elements. Recognize that the actual electron configuration for some elements differ from those predicted by the Aufbau principle. 	S.11.A.3.2.3 S.11.A.3.3.1 S.11.A.3.3.2 S.11.A.3.3.3 S.11.B.1.1.1

Course Name: Chemistry SB Unit: The Periodic Table Text: *Chemistry*, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How did chemists begin to organize the known elements?	 Recognize that chemists used the properties of elements to sort them into groups. Compare early and modern periodic tables. 	S.11.A.3.3.1 S.11.C.1.1.4
How did Mendeleev organize his periodic table?	 Describe why Mendeleev was given credit for developing the periodic table. Understand that Mendeleev arranged the elements into groups based on a set of similar repeating properties. Recognize that Mendeleev arranged the elements in his periodic table in order of increasing atomic mass. 	S.11.A.3.3.1 S.11.C.1.1.4
How is the modern periodic table organized?	• Recognize in the modern periodic table, elements are arranged in increasing atomic number.	S.11.A.3.3.1 S.11.C.1.1.4
What are three broad classes of elements?	 Identify by location on the periodic table if an element is a metal, non-metal, or metalloid. List the properties of a metal, non-metal, and metalloid. 	S.11.A.3.3.1 S.11.C.1.1.4

Text: Chemistry, Prentice Hall. 2008			
Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors	
What type of information can be displayed on the periodic table?	 Use the periodic table to correlate the number of protons, neutrons, and electrons in an atom. Compare the number of protons and neutrons in isotopes of the same element. Identify similarities in chemical behavior of elements within a group. Recognize that elements can be sorted into groups based on their electron configurations. 	S.11.A.3.3.1 S.11.C.1.1.2 S.11.C.1.1.4	
Are their patterns in the periodic table?	 Describe trend among elements for atomic size. Explain how ions form. Describe periodic trends for the following properties of ions: ionic charge, ionic radii, ionization energy, and electronegativity. 	S.11.A.3.3.1 S.11.C.1.1.2 S.11.C.1.1.4	

Course Name: Chemistry SB Unit: The Periodic Table

Course Name: Chemistry SB Unit: Ionic and Metallic Bonding Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
What is an ion?	 Determine the number of valence electrons in atoms using the periodic table. Predict the charge an atom will acquire when it forms an ion by gaining or losing electrons and name the ion. Explain how the octet rule applies to atoms of metallic and non-metallic elements. Describe how cations form and anions form. Define a polyatomic ion and write the names and formulas for the most common polyatomic ions. Identify mass number, atomic number, and the number of protons, neutrons, and electrons for an atom or ion when given the symbol and charge. 	S.11.C.1.1.1 S.11.C.1.1.4
What is an ionic compound?	 Explain the electrical charge of an ionic compound (neutral). Recognize that most ionic compounds have the following properties: Most are crystalline solids at room temperature. They generally have high melting points. They can conduct an electrical current when dissolved in water. 	S.11.C.1.1.2

Course Name: Chemistry SB Unit: Ionic and Metallic Bonding Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
How do I name and write formulas for ionic compounds.	 Apply the crisscross method for naming and writing formulas for simple binary ionic compounds, given the anion and cation names and electrical charges (level 1) or given a periodic table (level 2). Apply the rules for naming and writing formulas for compounds with the most common polyatomic ions. Compare the physical properties of a compound to the elements that form it. Compare the chemical properties of a compound to the elements that form it. Explain that combining elements in different proportions results in the formation of different compounds with different properties. 	S.11.C.1.1.3 S.11.C.1.1.4
How do metallic bonds form?	 Describe the arrangement of the valence electrons of metal atoms. Describe the arrangement of atoms in a metal. Explain the importance of alloys. 	S.11.C.1.1.2 S.11.C.1.1.3

Course Name: Chemistry SB Unit: Molecular Compounds Text: *Chemistry*. Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What are covalent bonds?	 Classify compounds as ionic and covalent bonding. Identify the information a molecular formula provides. State the octet rule, and recognize there are exceptions to the rule. Predict how many bonds each atom must form to attain a noble-gas configuration. Draw Lewis Dot Diagrams showing the structure of simple compounds. Recognize the strength of a covalent bond is related to its bond dissociation energy 	S.11.A.3.2.2 S.11.A.3.2.3 S.11.C.1.1.2 S.11.C.1.1.3
Do the properties of compounds relate to the type of bonding?	 Generalize, from investigations, the physical properties (e.g., malleability, conductivity, solubility) of substances with different bond types. Given a model, describe the shape and resulting polarity of water, ammonia, and methane molecules. 	S.11.B.1.1.1 S.11.C.1.1.2 S.11.C.1.1.4

Course Name: Chemistry SB Unit: Molecular Compounds Text: *Chemistry*, Prentice Hall, 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What are polar covalent bonds?	 Recognize how electronegativity values determine the distribution of charge in a polar molecule. Describe what happens to polar molecules when they are placed between oppositely charged metal plates. Evaluate the strength of intermolecular attractions compared with the strength of ionic and covalent bonds. Identify the reason why network solids have high melting points. 	S.11.A.1.1.3 S.11.C.1.1.2 S.11.C.1.1.4
How do I name and write the formula for molecular compounds?	 Write molecular formulas by using the prefixes in the names of molecular compounds to write the appropriate subscripts with the correct element symbols. When given the molecular formula, determine the name of the molecular compound by using the subscript of each element in the formula. 	S.11.C.1.1.3
What are the two laws that describe how compounds form?	 Define the Law of Definite Proportion Define the Law of Multiple Proportions Apply the rules for naming compounds and writing formulas by using a flowchart. 	S.11.A.3.1.1 S.11.A.1.1.4 S.11.C.1.1.3

Course Name: Chemistry SB Unit: Acids and Bases Text: *Chemistry*, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How do I name and write the formula for acids?	 Apply three rules for naming simple common acids. Apply the rules in reverse to write formulas of simple acids. 	S.11.C.1.1.3
How do I name and write the formula for bases?	• Understand that bases are named in the same way as other ionic compounds.	S.11.C.1.1.3
What are the properties of acids and bases?	Define the common properties of acids.Define the common properties of bases.	S.11.C.1.1.2
What theories attempt to explain the behavior of acids and bases?	 Identify acids and bases as defined by Arrhenius. Identify Acids, bases, conjugate acids, and conjugate bases as defined by Bronsted-Lowry. Differentiate between, Arrhenius, Bronsted-Lowry, and Lewis definitions of acids and bases. Recognize that strong acids and bases dissociate completely, forming equal amounts of ions. 	S.11.A.1.1.1 S.11.A.1.1.2 S.11.C.1.1.3

Course Name: Chemistry SB Unit: Acids and Bases Text: *Chemistry*, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is pH?	 Relate hydrogen ion concentration to pH values and to the terms acidic, basic or neutral. Using an indicator, measure the pH of common household solutions and standard laboratory solutions, and identify them as acids or bases. Determine the concentration of an acid or a base using a simple computerized acid-base titration. Research and report on the uses of acids and bases in industry, agriculture, medicine, mining, manufacturing, or construction. Evaluate mechanisms by which pollutants modify the pH of various environments (e.g., aquatic, atmospheric, soil). 	S.11.A.1.2.1 S.11.A.1.3.3 S.11.A.2.2.2

Course Name: Chemistry SB Unit: Chemical Quantities Text: *Chemistry*. Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How is Avogadro's number related to a mole of any substance?	 Recognize that substances are often measured by count, by mass, and by volume. Define Avogadro's number and relate it to a mole of a substance. Distinguish between the atomic mass of an element and its molar mass. 	S.11.A.1.1.4 S.11.A.2.1.3 S.11.A.2.1.5
How is the mole concept used in chemistry?	 Calculate the molar mass of a compound when given simple formulas and a periodic table. Convert between mass in grams to moles of a substance, and moles to mass by using a flowchart. Convert number of particles to moles by using a flowchart. Convert moles to number of particles by using a flowchart. 	S.11.A.1.1.4 S.11.A.2.1.3
What is percent composition of a compound?	 Recognize that the percent composition of a compound consists of a % by mass value for each element in the compound. Calculate the percent composition for specified elements when given the formula of the compound. 	S.11.A.1.1.3 S.11.A.1.1.4 S.11.A.2.1.3

Course Name: Chemistry SB Unit: Chemical Quantities Text: <i>Chemistry</i> , Prentice Hall. 200	Time Line: Yearly course	
Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is the difference between the molecular formula and the empirical formula	 Define and recognize empirical formulas and molecular formulas for a given compound. Calculate simple molecular formulas when given the percent composition and the molar mass. (NOTE: steps may be provided for Level1) Calculate simple empirical formulas when given the empirical formula and the mass. (NOTE: Steps may be provided for Level 1). 	S.11.A.1.1.4 S.11.A.2.1.3

Course Name: Chemistry SB Unit: Chemical Reactions

Text: Chemistry, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How do I know a chemical reaction has taken place?	 Describe evidences of chemical reactions. Compare the properties of reactants to the properties of products in a chemical reaction Investigate everyday chemical reactions that occur in a student's home (e.g., baking, rusting, bleaching, cleaning). 	S.11.A.1.1.3 S.11.A.1.2.2 S.11.A.1.3.2
What is the Law of Conservation of Matter?	 Use a chemical equation to describe a simple chemical reaction. Recognize that the number of atoms in a chemical reaction does not change. Explain how balanced equations apply to both chemistry and everyday situations. Determine the molar proportions of the reactants and products in a balanced chemical reaction. 	S.11.A.1.1.3 S.11.A.3.1.1 S.11.A.3.2.3
What are the five general types of reactions?	 Recognize the following reaction types: synthesis, decomposition, combustion, single replacement, and double replacement. Predict products and balance simple chemical equations for chemical reactions. Using a flowchart, predict the formation of a precipitate in a double replacement reaction. 	S.11.A.1.3.2 S.11.A.3.2.3 S.11.C.2.1.3

Course Name: Chemistry SB Unit: Arithmetic of Equations (Stoichiometry)

Text: Chemistry, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How is a balanced equation like a recipe?	 Calculate the amounts of reactants required or product formed in a non-chemical process. Explain how balanced equations apply to both chemistry and everyday situations. 	S.11.A.2.1.3
How do chemists use balanced chemical equations?	 Interpret balanced chemical equations in terms of moles, representative particles, and mass. Recognize that chemists use balanced chemical equations as the basis to calculate how mush reactant is needed or product is formed in a reaction. 	S.11.A.2.1.3. S.11.A.2.1.5
What quantities are always conserved in chemical reactions?	 Students will recognize that a balanced chemical equation can be interpreted in terms of different quantities including: number of atoms, molecules, moles, mass, volume, and energy. Paired students will write balanced chemical equations and then exchange their equations with other pairs of students to write quantitative relationships between reactants and products. Report evidence of energy transformations in a chemical reaction. After observing or measuring, classify evidence of temperature change in a chemical reaction as endothermic or exothermic. 	S.11.A.3.1.1 S.11.C.2.1.2 S.11.C.2.1.3

Course Name: Chemistry SB Unit: Arithmetic of Equations (Stoichiometry) Text: *Chemistry* Prentice Hall, 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How are mole ratios used in chemical calculations.	• Construct a mole ratio (conversion factor) from balanced chemical equations to convert between moles of reactant and moles of product.	S.11.A.1.1.4 S.11.A.2.1.3
What is a Limiting Reagent?	 Given the masses of reactants, predict which reactant will limit the reaction. Describe how the amount of product in a reaction (chemical or non-chemical) is affected by an insufficient amount of any of the reactants. 	S.11.A.1.1.3 S.11.A.1.3.1 S.11.A.2.1.3 S.11.A.3.2.1
What does the percent yield of a reaction measure?	• Calculate theoretical yield, actual yield, and percent yield, given the necessary information.	S.11.A.1.1.4 S.11.A.2.1.3

Course Name: Chemistry SB Unit: Kinetic Theory and a Model for Gases, Liquids , and Solids Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
What are the three assumptions of the kinetic theory as it applies to gases?	 Recognize particles in a gas are considered to be small hard spheres with an insignificant volume. Understand that motion of the particles in a gas is rapid, constant, and random. Recall that all collisions between particles in a gas are perfectly elastic (Note: in an elastic collision, kinetic energy is transferred without loss from one particle to another, and the total kinetic energy remains constant). 	S.11.A.1.1.1 S.11.A.1.1.2 S.11.A.1.1.3 S.11.A.1.1.4
How does Kinetic theory explain gas pressure?	 Recognize that gas pressure is the result of simultaneous collisions of billions of rapidly moving particles in a gas with an object. Understand that if there are no particles, there can not be collisions and therefore, there is no pressure. No pressure is called a vacuum. Understand the amount of gas, volume, and temperature affect gas pressure. 	S.11.A.1.1.2 S.11.C.1.1.6
What is the relationship between the temperature in Kelvin and the average kinetic energy of particles.	• Recognize the Kelvin temperature of a substance is directly proportional to the average Kinetic energy of the particles of substance.	S.11.C.1.1.5

Course Name: Chemistry SB Unit: Kinetic Theory and a Model for Gases, Liquids , and Solids Text: *Chemistry*, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What factors determine the physical properties of a liquid?	 Understand that according to kinetic theory, particles of a liquid are attracted to each other, and recognize that this is a key difference between liquids and gases. Recognize that intermolecular attractions in liquids reduce the amount of space between the molecules in a liquid. Understand intermolecular attraction is why liquids are more dense than gases. Understand intermolecular attraction is why liquids and are not able to be compressed. 	S.11.A.3.2.2 S.11.C.1.1.2 S.11.C.1.1.6

Course Name: Chemistry SB Unit: Kinetic Theory and a Model for Gases, Liquids, and Solids Text: *Chemistry*, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is the relationship between evaporation and Kinetic energy?	 Recall the conversion of a liquid to a gas is called evaporation. Understand that during evaporation, only those molecules with a certain minimum kinetic energy can escape from the surface of the liquid. 	S.11.C.1.1.6 S.11.C.2.1.2
How are the structure and properties of solids related?	• Explain how the orderly, fixed arrangement of atoms explains the properties of solids.	S.11.C.1.1.2
What determines the shape of a crystal?	 Describe how the shape of a crystal reflects the arrangement of the particles within the solid. Explain how allotropes of an element are different. 	S.11.C.1.1.2 S.11.A.3.3.1 S.11.A.3.3.2
How are changes of state represented on a phase diagram?	 Understand a phase diagram is a graph which gives the conditions of temperature and pressure at which a substance exists as a solid, liquid and gas. Understand that the conditions of temperature and pressure at which two phases exist in equilibrium are indicated on a phase diagram by a line separating the phases. Recall the term "triple point" describes the only set of conditions at which all three phases can exist in equilibrium with one another. 	S.11.A.1.3.1 S.11.A.3.2.3

Course Name: Chemistry SB Unit: The Gas Laws Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
How are the temperature, volume, and pressure of a gas related?	 Students will create a concept map entitled "Gas Laws" to relate the relationship of pressure, temperature, and volume to the following gas laws: Boyle's Law Charles Law Gay-Lussac's Law The Combined Gas Law Compute the value of an unknown using the combined gas law. Level 1 students may be paired to solve math practice problems. 	S.11.A.1.3.1 S.11.A.3.1.1 S.11.A.3.1.2 S.11.C.1.1.5
What is the Ideal Gas Law	 Students will compute the value of an unknown variable in the equation for the ideal gas law. Level 1 students may be paired to solve math practice problems 	C.11.C.1.1.5

Course Name: Chemistry SB Unit: The Gas Laws Text: *Chemistry*, Prentice Hall. 2008

Essential Content/Essential Questions	Performance Objectives	Standards/Anchors
Under what conditions are real gases most likely to differ from ideal gases?	 Recognize that real gases do not obey the assumptions of kinetic theory at all conditions, therefore, an ideal gas does not exist. Students will compare and contrast real and ideal gases. Students will discuss that at many conditions, real gases behave very much like an ideal gas. Students will recognize that real gases differ most from an ideal gas at low temperature and high pressure. 	S.11.A.1.1.1 S.11.A.1.1.4 S.11.A.1.3.1 S.11.C.1.1.5
What is Dalton's Law of Partial Pressure?	• Students will relate the total pressure of a mixture of gases to the partial pressure of the component gases.	S.11.A.1.1.3 S.11.A.1.1.4 S.11.C.1.1.5
What is Graham's Law of Effusion?	 Students will recall that during <i>effusion</i>, a gas escapes through a tiny hole in its container, whereas <i>diffusion</i> refers to the tendency of molecules to move towards areas of lower concentration. Students will explain how the molar mass of a gas affects the rate at which the gas diffuses and effuses. 	S.11.A.1.1.1 S.11.A.1.1.5 S.11.C.1.1.5

Course Name: Chemistry SB Unit: Solutions Text: Chemistry Prentice Hall 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
What is meant by the term surface tension?	• Students will use analogies to point out the skin-like qualities of water due to high surface tension, a result of the structure of water molecules and hydrogen bonding.	S.11.C.1.1.1 S.11.C.1.1.2
What is meant by the term polarity?	 Describe polarity as a partial negative charge on a molecule resulting from electronegativity differences between covalently bonded atoms. Demonstrate the concept of "like dissolves like" for polar and non-polar solutions Describe why a detergent molecule will dissolve both oils and also dissolve in water. 	S.11.A.1.2.2 S.11.C.1.1.1 S.11.C.1.1.2
What is the difference between a solute and a solvent?	 Students will recognize the dissolving media is the solvent, and the dissolved particles are the solute. Students will distinguish between a solution, suspensions and colloids. 	S.11.C.1.1.2
What is an electrolyte?	 Students describe an electrolyte as a substance that conducts an electric current when dissolved in solution. Students will recognize that ionic compounds are electrolytes because they dissociate into ions. 	S.11.C.1.1.2
What is a hydrate?	• Demonstrate how the formula for a hydrate is written.	S.11.C.1.1.2

Course Name: Chemistry SB Unit: Nuclear Chemistry Text: *Chemistry*, Prentice Hall. 2008

Essential Content/ Essential Questions	Performance Objectives	Standards/Anchors
How does an unstable nucleus release energy?	 Recognize that radioactive particles and wavelike radiations are products of the decay of an unstable nucleus. Interpret graphical data relating half-life and age of a radioactive substance. Describe the mass, energy, and penetrating power of alpha, beta, and gamma radiation. Discuss the effects of nuclear radiation on humans or other organisms. 	S.11.A.1.1.4 S.11.A.1.1.5 S.11.C.2.1.2
What happens in a nuclear chain reaction?	 Describe what happens in a nuclear chain reaction Explain the role of water in the storage of spent fuel rods. Distinguish fission reaction from fusion reactions. 	S.11.A.1.1.1 S.11.A.1.2.1 S.11.A.2.2.2 S.11.A.3.1.1 S.11.C.2.1.2